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Abstract
The prespecification of the network is one of the biggest hurdles for applied researchers in undertaking

spatial analysis. In this letter, we demonstrate two results. First, we derive bounds for the bias in nonspatial

models with omitted spatially-lagged predictors or outcomes. These bias expressions can be obtained

without prior knowledge of the network, and are more informative than familiar omitted variable bias

formulas. Second, we derive bounds for the bias in spatial econometric models with nondifferential error

in the specification of the weights matrix. Under these conditions, we demonstrate that an omitted spatial

input is the limit conditionof including amisspecificed spatialweightsmatrix. Simulatedexperiments further

demonstrate that spatial models with a misspecified weights matrix weakly dominate nonspatial models.

Our results imply that, where cross-sectional dependence is presumed, researchers should pursue spatial

analysis even with limited information on network ties.

Keywords: spatial dependence, bounds, omitted variables, measurement error

Across the social sciences, many theories involve cross-unit interactions resulting from spillovers

in predictors (e.g., externalities) or outcomes (e.g., interdependence). Where researchers are

explicitly interested in cross-unit relationships, spatial econometric models are widely used

(Anselin 1988; Franzese and Hays 2007). Even if researchers are otherwise uninterested in these

relationships, however, accounting for spatial dependence is o�en necessary to recover unbiased

estimates.

With a variety of spatial models to select from and widely-available so�ware routines, esti-

mating spatial models is easier than ever. Yet, one prerequisite for spatial analysis continues

to frustrate applied researchers: the specification of the spatial weights matrix. Specifying the

spatial weights matrix requires additional theories and data for cross-unit relations (Neumayer

and Plümper 2016). Researchers, however, o�en lack theory-backed information to motivate this

choice (Corrado and Fingleton 2012). As a result, any spatial weights matrix can be contested

and the value of the resulting estimates disputed. This may lead researchers away from spatial

econometricmodels and towardmodels that ignore spatial relationships—especiallywhenunder-

standing spatial relationships is not the primary concern.

In this note, we consider the consequences of ignoring spatial interactions outright and of

introducing themwith error in theweightsmatrix. We first derive bounds of the bias from ignoring

spatial dependence. Exploiting several features unique to spatial relationships, we obtain bounds

that are more informative than common expressions for omitted variables bias. We then demon-

strate that omitting spatial terms produces worse results than estimation based on amisspecified

network under nondifferential error. As such, we argue that researchers should prefer spatial

models, even when they possess limited knowledge of the network.
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1 Confounding fromOmitted Spatial Dependence

We consider two spatial processes: (1) spillovers of predictors across units, in the form of a spatial

lag of X (SLX)model and (2) outcome interdependencebetweenunits, in the formof a spatial auto-

regressive (SAR) model.

Consider a SLX data-generating process:

y = α +xβ +Wxθ+∈, (1)

where y,x, and ∈ are N-length vectors of the outcome, predictor, and error term, respectively.

W is an N-by-N spatial weights matrix specifying network ties between units. We make usual

assumptions aboutW: it has zeroes along the diagonal, non-negative elements, and is normalized

using standard approaches. Interest is in estimating the coefficient β .

OmittingWx results in standard omitted variables bias:

plimn→∞ β̂OLS −β = θ
cov(Wx,x)

var(x)
. (2)

Our goal is to identify, for given sample realizations ofW and x, more informative bounds for the

bias than expression (2).1 Usually, the omitted variable bias formula does not offermuch leverage,

because the covariances involving the omitted terms are unknown.When the omitted variable is a

spatial lag of a predictor, however, we havemore information, becauseWx is a linear combination

of the values of x. Consequently, knowledge of x is sufficient to produce empirical bounds.

Specifically, for a large class of common weights matrices,2

����
cov(Wx,x)

var(x)

���� ≤ 1. (3)

Under these conditions, the upper bound of the bias in Equation (2) is θ. In many contexts, own-

unit values of a predictor canbe reasonably assumed tohave a larger effect thanother-unit values,

such that |β | ≥ |θ |. This implies that the maximum asymptotic bias is β .3

Thus, for anygiven sample,β providesanupperboundon thebias in β̂OLS , and, asymptotically,

β̂OLS is in the interval [0,2β ] . Except for randomness, therefore, we should not observe sign

switches as a consequence of omitting Wx. Moreover, given a potentially biased estimate β̂OLS ,

we can estimate the lower bound of β as
β̂OLS

2
. This lower bound shi�s closer toward β̂OLS as

the magnitude of spillovers decreases, allowing for assessment of the sensitivity of substantive

effects.

As an illustrative example, consider economic voting: how do economic conditions shape

voting behavior? In addition to local GDP growth, growth in neighboring units can matter for

evaluations of incumbents throughbenchmarking effects (Kayser andPeress 2012). Arel-Bundock,

Blais, and Dassonneville (2019) demonstrate that many of these theories translate into SLX

1 The standard errors are also biased (Franzese and Hays 2007). A similar approach to ours may extend to the variance–
covariance matrix, which we leave to future work.

2 Weprovide full results in theAppendix. For intuition, note thatWo�en induces averagingof the values of theoriginal vector
x, thereby reducing the variance. A sufficient condition for inequality (3) to hold is that Moran’s I in the sample is bounded
by [−1,1], which generally holds except “for an irregular pattern” (Cliff and Ord 1981). We demonstrate that this inequality
holds for any symmetric weights matrix; for any spectral weights matrix; and for any doubly-stochastic weights matrix.
This includes all matrices based on the attributes of undirected dyads, such as inverse distance, bilateral flows, threshold
models, and contiguity. For arbitrary combinations of W and x the inequality may no longer hold. We derive worst-case
bounds for arbitraryW that can be calculated from the sample, and show that inequality (3) holds for any arbitraryweights
matrix when x is binary.

3 The plausibility of |β | ≥ |θ | depends on the specific application. We believe it is defensible in most contexts our note
addresses: researchers consider spatial effects a nuisance and have little prior information aboutW.
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models: θ, the coefficient onWx, captures benchmarking effects; β , the coefficient on x, captures

conventional economic voting.

It is difficult to imagine a scenario under which growth in neighboring countries has a larger

effect on vote choices than domestic growth, so |β | ≥ |θ | seems reasonable. We estimate three

models using the Kayser and Peress (2012) data, assuming that their network specification cap-

tures the trueW: (1) incumbent vote share regressed on growth (x), plus controls, (2) incumbent

vote share regressed on growth (x) and trade-weighted global growth (Wx), plus controls and

(3) trade-weighted global growth regressed on growth, plus controls. The first model yields a

potentiallybiasedestimate β̂ (0.530), the secondmodel yields estimates forβ (0.577) andθ (-0.173)

that we treat as “true,” and the third model yields an estimate (0.270) of Cov(x,Wx)/Var(x).

This demonstrates that themain conditions necessary for our bound are plausible (and conser-

vative) in real-world data: |θ | = 0.173 < |β | = 0.577, and Cov(x,Wx)/Var(x) = 0.270 ≤ 1. Addition-

ally, the lower bound on β estimated from the biased β̂ – that is,
β̂

2
= 0.530

2
= 0.265—holds because

the bias, in this case, was attenuating. However, this lower bound also holds for alternative W’s

that we have not considered. That is, we do not need to assume that trade is the appropriate edge

whenmaking cross-country economic evaluations.

Similar results follow for the SAR data-generating process,

y = α +xβ +ρWy+∈. (4)

Omitting the spatial lag of the outcome (Wy) induces bias

plimn→∞ β̂OLS −β = ρ
cov(Wy,x)

var(x)
. (5)

Using condition (3) and the derivation detailed in Betz, Cook, and Hollenbach (2020a), this

expression can be rewritten as

plimn→∞ β̂OLS −β ≤
βρ

1−ρ
, (6)

with β̂OLS in [0,∞).4

These results have several implications. First, asymptotically, an omitted spatial lag of the

outcome cannot produce a sign reversal on the estimated coefficient. Moreover, the bias is

proportional to β , the true effect.

Second, our assumptions have been purposefully weak. Restricting the domain of ρ yields

tighterbounds. For example,withρ < 0.5—which still implies strong spatial interdependence—the

bounds on βOLS are identical to those derived earlier, [0,2β ]. Additionally, expression (6) allows

for a simple form of sensitivity analysis by determining permissible values of ρ for a desired lower

bound on β , or to graph the lower bound of β given ρ.

Finally, the bias can again be expressedwith data on hand. Aswe demonstrate in the Appendix,

empirical boundscanbecalculated fromthesampledata for arbitraryW,whichwill be tighter than

those implied by (6) because they yield a finite upper bound on cov(Wy,x).

2 Bias from aMisspecified Network

Omitting relevant spatial inputs induces bias, yet we can still infer substantively relevant infor-

mation from such results. Modeling these spatial terms explicitly promises greater gains. To do

so, researchers must presupply the weights matrix. In applied work, researchers o�en fear that

4 β in the SAR model reflects the prespatial (i.e., partial equillibrium) effect of xi on yi . Total effects also involve spatial
spillovers and feedback (LeSage and Pace, 2009). The quantity we consider is similar to that obtained by spatial filtering.
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they do not have sufficient information to accurately specify W, which may cause them to forgo

modeling spatial terms at all. Returning to the example of economic voting, Arel-Bundock, Blais,

and Dassonneville (2019) note that the existing literature provides no theoretically grounded

argument for a specific choice of W. Perhaps as a consequence, few studies of conventional

economic voting account for benchmarking effects.

Given the centrality of the specification of W, these concerns have received considerable

attention (CorradoandFingleton2012;Neumayer andPlümper 2016). Researchers have suggested

that uncertainty over competingWs can be assessed using information criteria (Halleck Vega and

Elhorst 2015), modeled using Bayesian model averaging (Juhl 2020), and may be less essential

than presumed because of the high degree of correlation among different Ws (LeSage and Pace

2014). We demonstrate that spatial models with misspecified weights matrices weakly dominate

nonspatial models under randommeasurement error of the weights matrix.

First, consider a SLX process. Suppose instead ofWwe possess a noisy W̃,

W̃x =Wx+e, (7)

whereWx ⊥ e, indicating that the spatial lag suffers from classical, nondifferential measurement

error. Estimating a SLXmodel yields

plimn→∞ θ̂SLX = θ
σ2
Wx |x

σ2
Wx |x

+σ2
e

= θλ, (8)

where σ2
Wx |x

is the residual variance of regressing Wx on x, and λ is the bivariate reliability ratio

(Carroll et al. 2006). Because λ is bounded on the unit interval, Equation (8) indicates the usual

attenuation bias.

The corresponding bias in the estimate of β is

plimn→∞ β̂SLX −β = θ(1−λ)
cov(Wx,x)

var(x)
. (9)

This expressions corresponds to theomitted variables bias in Equation (2)weightedby (1-λ). Thus,

the bias in Equation (9) can be no greater than the bias in Equation (2). Omitting a spatial predictor

provides the limit condition of including a spatial predictor with a misspecificed weights matrix.

Because β̂SLX is less biased than β̂OLS , the implied lower bound on β is also more informative.

For the SARmodel, estimation is more complicated: the simultaneity of y andWy necessitates

maximum likelihood or instrumental variable (IV) methods (Anselin 1988). While IV strategies

typically offer relief from measurement error, this is not the case for spatial models where the

instruments are spatially-lagged realizations of the predictors. Because these are generated using

the sameweightsmatrix as the outcome, they inherit—andare correlatedwith—themeasurement

error. Thus, misspecifying the weights matrix results in asymptotically biased estimates (see the

Appendix).

To derive the bias expression in the SAR model, we consider a just identified IV model where

W̃x is used as an instrument for W̃y. Analogously to the SLXmodel, the IV estimation produces

plimn→∞ β̂IV −β = ρ(1−λ)
cov(Wy,x)

var(x)
. (10)

As before, the bias in Equation (10) can be no greater than the bias in Equation (6). Consequently, a

misspecifiedweightsmatrix inducesbias in theestimation, but improvesover theomittedvariable

bias from ignoring spatial interdependence.
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This should encourage researchers to consider spatial models even where knowledge of the

unit ties is imperfect. Not only do spatial estimators of β weakly dominate those from nonspatial

models, but researchers also obtain sample estimates of θ or ρ. This allows calculating postspatial

and total effects of x (Franzese and Hays 2007; LeSage and Pace 2009), yielding a more complete

understanding of the relationship of interest.

3 Simulation

The following simulations demonstrate the small sample performance of spatial models whenW

ismisspecified.We focuson theSARmodel,which is themostwidely used spatialmodel in applied

research.5 We generate data where both y and x are governed by SAR processes:

y = (I−ρyW)
−1 [α +βx+ ∈], (11a)

x = (I−ρxW)
−1u, (11b)

where u and ∈ are N-length vectors with elements drawn from N (0,1). β reflects the direct (i.e.,

prespatial) effect of x on y, while ρy and ρx determine the strength of the spatial autocorrelation

in y and x.6

We hold W and u fixed across simulations. Locations for observations are determined by

drawingvertical andhorizontal coordinates fromU(0,5). Basedon thesecoordinates,wegenerate

a binary 10-nearest-neighbor W matrix. We fix β at 2 and the number of observations at 150

across the experiments, focusing on variation in the spatial autoregressive parameters ρx and

ρy , which we vary between 0 (i.e., no spatial interdependence), 0.3, and 0.6 (i.e., high spatial

interdependence). For each of these 9 experimental settings, we simulate 2,000 data sets.

To induce misspecification in the matrix W̃ used in the estimation, we generate a second

connectivity matrix (M) based on a new random draw of locations.M is therefore independent of

the trueW used in the data-generating process. We then generate the set of connectivity matrices

used in the model estimation (W̃) as a mixture of the true (W) and false (M) matrices. Specifically,

the elements w̃i ,j are determined as

w̃i ,j =




wi ,j if d = 0where d ∼ Bern(p),

mi ,j otherwise,

where p is the probability ofmisclassification, whichwe increase from 0 (no error) to 1 (all error) in

increments of 0.05. In total, this produces 21 connectivity matrices used in estimation, which are

all normalized using min–max normalization.7

Using the simulated data for y and x, we estimate nonspatial linear models (via OLS) and SAR

models (viaML) using W̃s of varying accuracy (decreasing in p, the probability ofmisspecification).

For eachmodel, we record β̂ to assess performance. Figure 1 shows the results for the simulations

of the SAR process based on 10-nearest neighbors andmin–max normalization. Each cell presents

the results for one combination of ρx and ρy ; ρx increases from 0 to 0.6 going from le� to right,

ρy increases moving from top to bottom. In each, we plot the densities of coefficient estimates

at different levels of the misspecification probability p. Darker shading indicates higher levels of

misspecification. The densities of β̂s for nonspatial models are plotted in black. The bias in both

5 In the Appendix, we present results for a SLX model.
6 It is not necessary that the spatial dependence in x is generated via a spatial autoregressive process. Any alternative which
produces spatial correlation in x (alongW) would induce the types of biases we consider.

7 In the Appendix we provide results for row normalization.
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Figure 1.Coefficientswithmisspecification ofW in SARmodels basedon 10-nearest-neighborswithmin–max
normalization (orange/grey) and OLSmodel omitting spatial lag (black).

the nonspatialmodels andmisspecified spatialmodels increases in ρy and ρx , being largest in the

bottom right cell.

The results underscore three points. First, as the misspecification of W̃ increases, the bias in

β̂ increases. Yet even with high interdependence and mismeasured (or omitted)W, the observed

bias ismuchsmaller than theboundsderivedabove.Second, theSARmodelweaklydominates the

nonspatialmodel. Even a SARmodel estimatedwith a random W̃ does noworse than omitting the

spatial term. Finally, the simulation results confirm our analytical results. For example, inequality

(6) implies a maximum bias of 3. The bias in the simulations clearly maintains that bound.

Moreover, with ρy = ρx = 0.6, on average we obtain
cov(Wy,x)
var(x)

= 1.45. Equation (5) thus implies an

OLS estimate of 2.87, identical to the average OLS estimate in the simulations. Tables C.1 and C.2

in the Appendix report these quantities for all simulation scenarios.

4 Conclusion

Researchers frequently suspect spatial dependence in their data, but lack knowledge of the pre-

cise network. Fearing that selecting the wrong network may open them to criticism, researchers

may forgo spatial models altogether. Here, we have demonstrated the potential biases intro-

duced from omitting spatial terms outright versus including them with error. Our results should

encourage the estimation of spatial models even if researchers have imperfect information. As

researchers in these settings likely lack strong theory-based specifications, we point to Griffith’s

five rules of thumb for specifying weights matrices (Griffith 1996).

We emphasize that our results do not hold under differential measurement error. We suspect

that differential measurement error is most likely for network ties that violate the exogeneity

assumption for spatial weights—implying that traditional spatial econometric models would be

inappropriate. However, we hope that future work extends our results to other contexts andmore

complex formsofmeasurement error. Several of the features identifiedheremaybeuseful in these

efforts. First, prior research focuses onmisspecification in the weights matrix, yet errors manifest

in the empiricalmodel as vectors. Second, restrictions onx—suchas limiting the analysis to binary

x—imply restrictions onWx. Finally, row andmin–max normalization imply bounds for the vector
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range and vector sum. Recognizing these attributes could be of potential use in newanalytical and

empirical approaches in future research.
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