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Abstract
Instrumental variable (IV) methods are widely used to address endogeneity concerns. Yet, a specific kind
of endogeneity – spatial interdependence – is regularly ignored. We show that ignoring spatial
interdependence in the outcome results in asymptotically biased estimates even when instruments are
randomly assigned. The extent of this bias increases when the instrument is also spatially clustered, as is
the case for many widely used instruments: rainfall, natural disasters, economic shocks, and regionally- or
globally-weighted averages. Because the biases due to spatial interdependence and predictor endogeneity
can offset, addressing only one can increase the bias relative to ordinary least squares. We demonstrate
the extent of these biases both analytically and via Monte Carlo simulation. Finally, we discuss a general
estimation strategy – S-2SLS – that accounts for both outcome interdependence and predictor endogene-
ity, thereby recovering consistent estimates of predictor effects.

As political scientists increasingly focus on the identification of causal effects, instrumental
variable (IV) models are becoming commonplace (e.g., Sovey and Green, 2011). IV models hinge
on the validity of the instrument. While researchers are usually aware of conditional independence
and relevance as general requirements for valid instruments, we identify a specific threat that is
frequently ignored: spatial interdependence in the outcome variable. Our review of IV models in
leading political science journals reveals that authors rarely discuss and never empirically address
spatial interdependence as a threat to inference (see Figure 1), even as theories of spatial inter-
dependence and diffusion proliferate across political science (see, e.g., Siverson and Starr 1990;
Starr 1991; Ward and Gleditsch 2002; Ward and O’Loughlin 2002; Simmons, Dobbin and Garrett
2006; Franzese and Hays 2007; Plümper and Neumayer 2010).1

This is not a trivial oversight. We show that failing to model outcome interdependence
produces estimates that are asymptotically biased, even when the instrument is randomly
assigned. When, in addition, the instrument exhibits spatial dependence similar to that of the
outcome, the bias in IV estimates increases and can even surpass that of ordinary least squares.
This concern applies to many popular instruments, including geographic, meteorologic, and
economic variables (see, e.g., Hansford and Gomez 2010; Ramsay 2011; Ahmed 2012), as well as
any instrument measured at a higher level of aggregation than the outcome, such as regional or
global economic, political, and institutional shocks (see, e.g., Stasavage 2005; Büthe and Milner

© The European Political Science Association, 2019.

1We analyzed each article on the basis of whether prior theories of spatial interdependence or diffusion had been
established for and could reasonably apply to the outcome of interest. The articles using IV models that are not at risk of the
issues we discuss here include pure time-series analyses, survey experiments, most field experiments, etc.
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2008; Boix 2011; Ramsay 2011). Because these instruments are not randomly distributed across
space, they risk increased bias even when they are otherwise plausibly exogenous.

Our results connect more general findings in the otherwise distinct literatures on spatial
interdependence and IVs. Ignored spatial interdependence constitutes an omitted variables
problem (e.g., Franzese and Hays 2007). While IV models are commonly thought to be immune
to omitted variable bias, and indeed frequently used to overcome it (Wooldridge, 2002), this
intuition does not always hold. Instead, as we show below, IV models can augment omitted
variables bias from unmodelled spatial interdependence.

Because of its reciprocal relationship with the outcome, ignored spatial interdependence also
ensures any instrument violates the exclusion restriction. As is well known, even mild violations
of the exclusion restriction can produce substantial bias (Bartels, 1991; Bound, Jaeger and Baker,
1995). When these violations are caused by spatial interdependence, however, solutions are
available to recover asymptotically unbiased estimates if one is willing to make assumptions
about the nature of spatial relationships in the outcome variable. Recent work in the spatial
econometrics literature has generalized spatial models to allow for endogenous predictors (e.g.,
Kelejian and Prucha 2004; Anselin and Lozano-Gracia 2008; Fingleton and Le Gallo 2008;
Drukker, Egger and Prucha 2013; Liu and Lee 2013). These same methods – hereafter spatial-two
stage least squares (S-2SLS) – are useful when addressing endogenous predictors even when
researchers are otherwise uninterested in spatial dependence theoretically.2 In short, with S-2SLS
researchers instrument for both the endogenous predictor and the spatial-lag of the outcome,
thereby obtaining consistent estimates of the desired causal effect.

In addition to accounting for possible outcome interdependence, this approach has two
attractive features. First, it nests the standard spatial-autoregressive (SAR) model and the stan-
dard IV model, allowing researchers to explicitly test restrictions rather than proceed by
assumption.3 Second, because it is an IVs approach, it should be straightforward to understand
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Figure 1. The plot shows the number of articles published in the APSR, AJPS, JOP, IO, BJPS, and World Politics between
2000 and 2016 that use IV models (light gray bars), and the number of those articles at risk of spatial interdependence in
the outcome (dark gray bars).

2To clarify, Franzese and Hays (2007) and others have previously used S-2SLS to indicate a spatial autoregressive (SAR)
model estimated via 2SLS. Here, we use this term more broadly to include instances where at least one of the non-spatial
predictors is also endogenous.

3We focus on the spatial-autoregressive model (SAR) for two reasons. First, it is the most widely used spatial model in
political science. Second, it is the interdependence in the outcome – as in the SAR – that induces the simultaneity that is at the
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and implement for those already pursuing IV strategies. Our simulations demonstrate that this
approach consistently outperforms estimation strategies that neglect interdependence – even
under conditions unfavorable to spatial models.

We therefore advocate that researchers consider S-2SLS as a general, conservative strategy
when confronting endogenous predictors and existing theories suggest the possibility of inter-
dependence in the outcome variable. In the conclusion, we discuss some of the implications for
the use of IV models in applied research.

OLS and multifarious endogeneity
In order to better understand the problems that arise from neglecting spatial interdependence in
IV estimation, it is useful to first clarify that unmodelled interdependence is itself an omitted
variables problem. Consider a simple linear-additive model

y= βx + e; (1)

where y is an n-length vector of outcomes, x the predictor, and e the disturbance. The OLS
estimator of β is the sample covariance of x and y over the sample variance of x,

β̂OLS =
ccovðx; yÞcvarðxÞ : (2)

Substituting the right-hand side of equation (1) in for y yields the probability limit

plimn!1 β̂OLS = β +
covðx; eÞ
varðxÞ|fflfflfflfflffl{zfflfflfflfflffl}

endogeneity bias

; (3)

showing that β̂OLS is asymptotically unbiased if cov(x, e)= 0, that is, if x is exogenous.4 This result
should be familiar to readers. It is presented in any introductory econometrics textbook along
with common sources of bias: confounding due to omitted variables, simultaneity, and mea-
surement error in the variable of interest.

We are concerned with a special case of confounding: unmodelled interdependence between
outcomes. Spatial, or cross-sectional, interdependence occurs when a unit’s outcome affects the
choices, actions, or decisions of other units (Kirby and Ward 1987; Ward and O’Loughlin 2002;
Beck, Gleditsch and Beardsley 2006; Franzese and Hays 2007; Plümper and Neumayer 2010).
Theories of interdependence are “ubiquitous, and often quite central, throughout the substance
of political science” (Franzese and Hays 2007, p. 141): the contagion of conflict and crises, the
spread of domestic institutions and ideologies, economic integration and resulting policy coor-
dination, and participation in international agreements all provide examples. Ignoring this spatial
interdependence induces cross-sectional correlation in the residuals and, more problematically,
covariance between the predictors and the disturbances. As a consequence, coefficient estimates
are both inefficient and biased; in the following, we focus on the latter concern.

To distinguish confounding due to spatial interdependence from other sources of endogeneity
of x, we decompose the error term in equation (1) as

e= ρWy + u; (4)

where ρ is the effect of outcomes y in surrounding units j on unit i, weighted by W, an n-by-n
connectivity matrix which identifies the relationship between units i and j. As usual in spatial

heart of the problem we discuss. Other models that contain a spatial lag of the outcome and additional features, such as
autoregressive disturbances (the SAR-AR model), are extensions of the SAR model and could also be estimated. Drukker,
Egger and Prucha (2013) discuss the estimation of a SAR-AR model with an endogenous predictor, which can be estimated
using the same software routines we discuss below.

4When we discuss bias, we refer to asymptotic bias. All IV estimators have small-sample bias.
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econometrics, we refer to Wy as the spatial lag, with W determining which other-unit outcomes
yj are likely to influence the choices, actions, behaviors of unit i.

Then, we can rewrite equation (3) as

plimn!1 β̂OLS�β =
covðx; uÞ
varðxÞ

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Non�spatial endogeneity bias

+ ρ
covðx;WyÞ

varðxÞ
� �

:|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Spatial endogeneity bias

(5)

Equation (5) separately identifies spatial and non-spatial endogeneity as two potential
sources of bias in the OLS estimator.5 First, bias can result from more familiar, non-spatial
sources of endogeneity of x, that is, correlation between x and u. This is represented by the
first term in equation (5), which drops out if cov(x, u) is zero. Second, bias can arise from
spatial interdependence in y. As indicated by the second term on the right-hand side of
equation (5), this bias drops out if ρ= 0; that is, when there is no spatial interdependence.6

In what follows, we show that addressing the former while neglecting the latter fails to
recover unbiased estimates of the effect. In many cases, it magnifies the bias relative to
ordinary least squares.

Spatial bias in IV models
Following Sovey and Green (2011), we introduce IV estimation using familiar notation from
structural equation models, assuming linear–additive relationships between the variables. Sup-
pose a suitable instrument z is available, resulting in the following system of equations:

y = βx + e; (6)

x= γz + v: (7)

As before, suppose that the disturbance can be decomposed as e= ρWy + u and interdependence
is ignored in the estimation. Then, non-spatial endogeneity arises if cov(u, v) ≠ 0 and therefore
cov(x, u) ≠ 0. We assume in the following that the variable z satisfies the usual assumptions for
a valid instrument – cov(z, x) ≠ 0 and cov(z, u)= 0 – such that z is correlated with the endo-
genous predictor x but uncorrelated with the disturbance u.

The IV estimator is obtained as two-stage least squares (2SLS), such that

β̂2SLS =
covðy; zÞ
covðx; zÞ : (8)

Inserting the expression for y yields

plimn!1 β̂2SLS�β=
ρ ´ covðWy; zÞ

covðx; zÞ +
covðu; zÞ
covðx; zÞ ; (9a)

= ρ
covðWy; zÞ
covðx; zÞ

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Spatial endogeneity bias

; (9b)

which shows that, by assumption, 2SLS does not suffer from the non-spatial endogeneity bias of
OLS: because cov(u, z)= 0 and cov(x, z) ≠ 0, the second term on the right-hand side of equation (9a)

5This derivation of the bias is only approximate, as W also increases in n.
6It is only when ρ is zero that this term drops out. cov(x, Wy) is non-zero, because Wy is a function of x. While the most

obvious solution to address the bias from interdependence may be including Wy as a variable, this would not be sufficient,
because Wy itself is endogenous in the outcome equation; see, e.g., Franzese and Hays (2007).
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disappears. This result, of course, is well appreciated and motivates the use of 2SLS where x is
suspected to be endogenous.

Less appreciated is that 2SLS is biased in the presence of (ignored and hence unmodelled)
interdependence. In short, the instrument violates the exclusion restriction, because it is related
to the outcome disturbances via the omitted interdependence term Wy. To see why, note that
after substituting and rearranging terms, equation (6) can be multiplied by W and written as

Wy =WðI�ρWÞ�1½βγz + βv + u�: (10)

That is, we can re-express the spatial lag, Wy, in terms of the spatially weighted instrument z and
stochastic terms u and v. Substituting this expression into the definition of the spatial bias in
2SLS and rearranging, we obtain

plimn!1 β̂2SLS�β= β ρ
covðWz; zÞ
varðzÞ

� �
+ β

X1
k= 2

ρk
covðWkz; zÞ

varðzÞ
� �

: (11)

2SLS is biased unless the terms on the right-hand side are zero. For clarity in the following
exposition, we have split the bias into two terms – the first representing the first-order bias and
the second representing higher order terms. Both terms disappear if ρ= 0, such that no inter-
dependence exists. If interdependence in the outcome does exist, such that ρ ≠ 0, however, 2SLS
is biased.

Notably, this bias persists even when z is randomly assigned and, therefore, independently
distributed and otherwise exogenous. It is in this case that the two-term expression of the bias in
equation (11) becomes useful. When z is independently distributed, the first term drops out,
because independence in z implies that any specification ofW yields cov(Wz, z)= 0.7 That is, the
value of z on unit i is uncorrelated with the value of z on any other unit (and their weighted-sumP
j
wijzj). However, this is not true of the second term in equation (11). While W is a hollow

matrix – all elements along the diagonal equal zero – higher order multiples of W are not hollow
matrices as ties between units are not unidirectional.8 Because Wk has non-zero diagonal ele-
ments, it follows thatWkz is, for unit i, a function of zi, and therefore correlated with z, regardless
of the distribution of z.

To gain more intuition for why this is the case, recall that W can be thought of as defining
‘neighbors’: non-zero entries indicate which units on the outcome variable are related to one
another. Then, for each unit, the respective row of W defines a set of neighbors. Heuristically,
powers of W then represent neighbors-of-neighbors. For example, the i th row of W2 indicates i's
neighbors’ neighbors. This is important because, intuitively, a unit always is a neighbor of its own
neighbors. Consequently, if W links unit i to j and unit j to unit i, then W2 (and higher powers
ofW) links unit i back to itself. Therefore, even under independence of z, some Wkz 6? z as long
as W is non-triangular. Put simply, even if unit i is not related to any of the neighbors defined
by W, unit i is always related to itself through these higher powers of W.

That is, for ρ ≠ 0, any instrument that is randomly assigned is (only) first-order unbiased,
providing a lower bound on the spatial bias. While the bias is relatively mild, spatial

7Recall that W is the connectivity matrix of the outcome – based on, e.g., contiguity, neighbors, or inverse distance –
defining how yi is related to all yj≠i. In connectivity matrices likeW the diagonal elements are always zero, that is, you cannot
be a direct neighbor of yourself.

8If spatial ties were unidirectional –W is upper- or lower-triangular – the higher order multiples would remain inde-
pendent of zi. However, interdependence generally rules out unidirectional ties. The importance of reciprocal relationships
between units – i.e., interdependence – for our results can also be seen in the contrast to temporal dependence. With temporal
dependence, the current value of the outcome is a function of past values of the outcome, but past outcomes are not a
function of the current value. Hence, a randomly assigned instrument poses no problems under temporal dependence.
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interdependence in the outcome variable renders IV models biased, even under conditions most
favorable to IV models, such as experimental or quasi-experimental designs.

RESULT 1 With unmodelled spatial interdependence in the outcome, 2SLS is asymptotically
biased.

However, the instruments often used in practice are not independently distributed, risking
greater bias still. Specifically, the more the values zi are similar to neighboring values zj ≠ i (where
neighboring values are defined by W, the matrix defining relationships among units for the
outcome), the greater the bias will be: the first term in equation (11) no longer drops out, and all
of the terms in the expression increase in magnitude.

To understand this result, it helps to think of 2SLS broken down into two stages. The first
stage is a regression of the endogenous predictor x on the instrument z, which yields fitted values
x̂. The second stage is a regression of the outcome variable y on the fitted values x̂. We make two
observations. First, if z follows a spatial distribution, the projected values x̂ inherit some of that
spatial pattern. Second, in a regression with an (erroneously) omitted spatial lag, the bias in
coefficient estimates is reinforced for variables that have a spatial distribution similar to that of
the outcome (see, e.g., Franzese and Hays 2007). It follows that the bias in 2SLS becomes most
severe if the fitted values x̂ have a spatial distribution similar to that of the outcome –which, in
turn, is the case if the instrument has a spatial distribution similar to the outcome.

It is not crucial that the instrument and the outcome follow identical spatial patterns, merely
that the instrument and the outcome have some similarity in their spatial patterns. That is, the
bias in 2SLS increases if theW that characterizes the relationships in y also partially characterizes
the relationships in z. In practice, when considering the extent of the spatial bias in 2SLS, one can
therefore remain largely agnostic about the nature of the spatial relationships on the instru-
ment – in particular, it is not necessary to determine whether z and y are truly governed by
identical Ws or even which specific W applies to the instrument (and our empirical approach,
detailed in the next section, is consistent with this view). Our point is much simpler: if the
outcome is spatially interdependent, then the bias in 2SLS will be more severe for instruments
with spatial patterns similar to that of the outcome.

These concerns apply to a large set of common instruments. Researchers often draw on
geographic, meteorologic, or economic variables, such as natural disasters (Ramsay 2011),
rainfall data (Hansford and Gomez 2010), or commodity price shocks (Ahmed 2012), where
spatial dependence among units is likely – natural disasters, rainfall, and price shocks do not stop
at territorial borders. The same problem arises for instruments that are measured at a higher level
of aggregation than the endogenous predictor. If, for instance, the instrument is based on
regional political or institutional shocks, such as waves of democratization (Stasavage 2005) or
membership in international institutions in neighboring countries (Büthe and Milner 2008), the
instrument induces spatial correlation in the projection x̂ by construction: the value of
the instrument is identical or nearly identical for each of the lower-order observations within the
cluster. Since many outcome variables of interest in political science also cluster regionally – e.g.,
democratization, economic growth, or policy – regional-level instruments are likely to reinforce
the bias in 2SLS.

To illustrate, consider the use of meteorological variables as instruments for democratization
(z) in models of economic development (y). Contiguous states (a widely usedW) likely have both
similar levels of development (y) and common weather patterns (z), where the former implies
ρ > 0 and the latter implies cov(Wz, z) > 0. It is under these conditions that the bias will be most
severe; as can be seen in equation (12), the bias increases in the strength of the interdependence
in the outcome (ρ) and the strength of the spatial dependence in the instrument (cov(Wz, z)).

RESULT 2 With unmodelled spatial interdependence in the outcome, the more similar are the
spatial distributions of the instrument and the outcome, the greater is the bias in 2SLS.
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We add three additional observations. First, these biases are usually inflationary, which can be
seen from equation (11). The bias terms are multiplied by powers of ρ, which is positive in most
applications (Franzese and Hays 2007). And, if z is governed by a similar pattern of spatial
dependence as the outcome, the covariances between Wkz and z are non-negative. Consequently,
the right-hand side of equation (11) should have the same sign as β and be proportional to β.
Thus, in most applications the bias in 2SLS that arises from spatial interdependence exaggerates
the true parameter value –where β is negative, 2SLS produces smaller coefficient estimates, and
where β is positive, 2SLS produces larger coefficient estimates.

Second, the spatial bias induced from the instrument can exceed the spatial bias in ordinary
least squares. Consider the relative spatial bias of OLS (the left-hand side) and 2SLS (the right-
hand side):

covðWy; xÞ
varðxÞ ≶

covðWy; zÞ
covðx; zÞ : (12)

To focus on the comparison of the spatial bias between 2SLS and OLS, suppose that no non-
spatial endogeneity exists. Re-expressing both terms, condition (12) becomes

X1
k= 1

ρk
covðWkx; xÞ

varðxÞ
� �

≶
X1
k= 1

ρk
covðWkz; zÞ

varðzÞ
� �

: (13)

Simply put, differences in the spatial distribution of the instrument and the endogenous
variable inform the relative degree of spatial bias. This is similar to Bartels’s (1991) recognition
that, because x can be considered its own instrument, when using an invalid instrument z the
gains relative to OLS are a function of the relative difference in how z and x covary with the
disturbance of y. Again thinking of the second stage in 2SLS as a regression of y on the projection
x̂ further clarifies the role of spatial dependence in the instrument: the bias of 2SLS relative to
OLS increases as the spatial distribution of the instrumented predictor, x̂, becomes more similar
to the spatial distribution of the outcome than the original predictor, x. Then, IV models
augment the spatial bias, because x̂ is more similar to the omitted spatial lag than x is. The
reverse, of course, also holds: if the instrument is randomly assigned, then the similarity between
the spatial pattern of the instrumented predictor, x̂, and the outcome decreases, and the bias of
2SLS relative to OLS declines. Nonetheless, even in that case, as we emphasize in Result 1, 2SLS
remains biased.

Finally, because spatial and non-spatial endogeneity biases may attenuate or reinforce each
other, ignoring spatial interdependence in the outcome risks unpredictable and possibly greater
overall bias than OLS. When the endogenous variable, x, is spatially less clustered than the
instrument, z, the severity of the difference in the spatial biases may be sufficiently large to
surmount the gains from addressing non-spatial endogeneity. And because the spatial and non-
spatial bias may have different directions, resolving one of the biases may easily produce results
further from the truth than resolving none. Perhaps most problematically, these offsetting effects
mean that the OLS and 2SLS estimates will not even be sufficient to obtain bounds on the true
parameter value.

Spatial models with additional endogenous predictors
What, then, can researchers concerned with endogeneity in a key predictor and spatial
interdependence in the outcome do? The solution is actually quite simple: estimate a modified
IV model. While early work in spatial econometrics assumed exogenous predictors, methods
for estimating models with additional endogenous predictors have become increasingly
common (Kelejian and Prucha 2004; Anselin and Lozano-Gracia 2008; Fingleton and Le Gallo
2008; Drukker, Egger and Prucha 2013; Liu and Lee 2013). To date, however, these models
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have not received much attention in applied spatial work in political science, and even less so
in contexts where researchers are not theoretically interested in spatial relationships. In short,
to redress the concerns above, researchers need to account for the spatial interdependence of
the outcome. Yet, including a spatial lagged-outcome produces a system of simultaneously-
determined, non-separable equations. That is, Wy is itself is an endogenous predictor, no
different than a simultaneously-determined x. Consequently, in spatial modeling, researchers
exploit the same strategies generally used when confronting endogenous predictors (such as
maximum likelihood, 2SLS, or GMM). As such, one can simply extend the familiar IV fra-
mework, applying it to account for outcome interdependence and predictor endogeneity. As
this is simply a special case of multiple endogenous variables, a spatial-two stage least squares
(S-2SLS) model can be estimated as in standard IV analysis: instrumenting for Wy and x
simultaneously.

While other solutions are also available – e.g., purging the spatial dependence of the outcome
equation via eigenvector filtering –we prefer S-2SLS for several reasons.9 First, the mechanics of
estimating this model are already familiar to researchers using IV estimation for an endogenous
variable x, because the estimator, 2SLS, is the same. Second, S-2SLS nests the non-spatial IV
model a researcher would have otherwise estimated. Rather than restrict ρ – the spatial effect – to
be zero by assumption, as in 2SLS, S-2SLS allows researchers to explicitly test this. As we
demonstrate in simulations, this nesting helps ensure that – even if no spatial interdependence is
present and ρ= 0 – the model recovers the same estimates as the original 2SLS, with only
minimal efficiency loss due to the additional parameter. Finally, the S-2SLS model, as well as
several extensions, can be estimated in both Stata (spivreg) and R (sphet).

The only practical hurdles to estimating a S-2SLS are in the specification stage: (i) what are
appropriate instruments for the spatial lag and (ii) what is the appropriate connectivity matrix W
for the outcome variable. The first, instrument selection, is comparatively simple. While
instruments for the endogenous predictor usually require finding additional exogenous variables,
instruments for the spatial lag can typically be found from transformations to the existing data.
Specifically, spatial lags of the exogenous predictors serve as instruments for the spatial lag of the
outcome. To see the basic intuition for this, just multiply W by both sides of the simple linear-
additive model – i.e., y= βx+ e⇒Wy= βWx +We. Just as x is related to y, Wx is related to Wy,
the spatial lag.10

The second practical hurdle, the selection of W, is already familiar to researchers with
exposure to spatial models. For those less familiar, we briefly sketch out the basics. To undertake
spatial econometric modeling, researchers must pre-specify how units are related to one another
(i.e., the network). Geographic proximity (e.g., contiguity) is commonly used, though researchers
should specify connections that are most theoretically appropriate for their data. These relational
measures for ‘space’ are then supplied to the model as the elements inW – an n-by-n connectivity
matrix which identifies the relationship between units i and j. S-2SLS clearly performs best when
W reflects the true network, yet gains are still likely even when researchers do not have full
information on the ties between units. First, in the worst-case (and unlikely) scenario that a
researcher completely mischaracterizes W, this would still do no worse in expectation than
2SLS – S-2SLS recovers a zero estimate of ρ due to misspecified W, while 2SLS does so by

9Limited and full information estimators allowing for both spatial and non-spatial endogeneity have been established, with
Kelejian and Prucha (2004) the first to derive formal large sample results; see also Drukker, Egger and Prucha (2013) for a
GMM estimator. Franzese, Hays and Cook (2016) discuss the complications of modeling spatial interdependence in discrete-
choice models.

10A more complete derivation can be seen by noting that the reduced form of the spatial-lag model discussed in section 3,
y = (I− ρW)− 1[xβx + u],

can be re-expressed using an infinite series and multiplied through by W to produce
Wy = Wxβx + ρW2xβx + ρ 2W3xβx + … + (I− ρW)− 1u,

indicating how spatial lags of x (and their higher order powers) effectively instrument for Wy.
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assumption. Second, due the high correlation across different possible network structures, even a
misspecified W has power against the truth (LeSage and Pace 2014). We revisit this concern in
the simulated experiments in the next section.11

Once specified, estimation of the S-2SLS model proceeds without additional complications.
Because S-2SLS is estimated via the 2SLS estimator, it inherits the asymptotic and small-sample
properties of 2SLS (including consistency, finite sample bias, and the sensitivity to weak
instruments).12 Similarly, standard variance estimators – robust to heteroskedasticity or non-
independence, for instance – are easily applicable. We demonstrate the gains that can be realized
from S-2SLS in the following sections.

Simulation experiments
To assess the performance of OLS, 2SLS, and S-2SLS, we undertake a series of Monte Carlo
experiments with varying levels of spatial and non-spatial endogeneity. In particular, the data for
our simulations are generated as follows:

y= ðI�ρyWÞ�1½xβ + λ1Q + u1�; (14a)

x= γz + λ2Q + u2; (14b)

z= ðI�ρzWÞ�1v; where v � Nð0; 1Þ; (14c)

where y is the outcome, x is the endogenous predictor, Q is a matrix of exogenous predictors, W
is a row-standardized connectivity matrix, and z is the instrument.13 Consistent with our dis-
cussion above, we only consider the consequences of spatial interdependence in y and z, which
are the key attributes for bias in 2SLS.14

The extent of spatial interdependence in the outcome and the instrument is given by para-
meters ρy and ρz, respectively, with larger values of ρy and ρz resulting in greater spatial inter-
dependence in y and z. We do not vary the specification of the W that governs the spatial pattern
of y and z, respectively. Non-spatial endogeneity is induced through draws of (u1, u2)

T=N(0, Σ),
where Σ is the covariance matrix of a bivariate normal random variable. We decompose Σ such
that we can specify the correlation (δ) between u1 and u2 directly. We vary δ to induce different
degrees of non-spatial endogeneity. If δ= 0, x is exogenous and OLS (or standard spatial) models
should be preferred. With non-zero δ and non-zero ρy, the assumptions of neither OLS nor
2SLS hold.

This setup allows us to consider various scenarios that correspond to our results above.
ρy= ρz= 0 produces the standard IV model with an i.i.d. instrument, such that 2SLS should

11Note that the researcher need not specify the spatial distribution of the instrument.W specifies connections among units
with respect to the outcome variable. As we highlighted in the previous section, the extent of the bias in 2SLS depends on the
similarity in the spatial pattern between the instrument and the outcome. But it is not necessary to determine the specific
spatial pattern of the instrument.

12For an approach addressing weak instruments in IV models, see Betz (2013). Drukker, Egger and Prucha (2013) and Liu
and Lee (2013) allow for both additional residual spatial error autocorrelation and/or heteroskedasticity. These extensions are
GMM-plus-IV, implemented in Stata’s spreg. While we do not discuss this at length here, the first step is the S-2SLS we
present, which provides the initial, consistent estimates of the spatial interdependence in the outcome that can then be used
in the second step estimation of the error autocorrelation, with successive iteration over both steps until convergence is
obtained.

13Locations for the units are generated by twice taking n draws from a standard uniform, with the combined results
producing xy-coordinate points. Connections between the units are then generated using a k-Nearest Neighbor algorithm
with k = 5, returning a binary n-by-n matrix with each element in a row coded as 1 for the five closest units or 0 for all
others (including zeros along the diagonal). The matrix is then row-standardized.

14As discussed above, the relative spatial pattern of x and z only matters for the performance of 2SLS relative to OLS. For
the simulations, to illustrate Result 2, we only consider scenarios where 2SLS performs relatively poorly due to the spatial
pattern in z.
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perform well. ρy ≠ 0 but ρz= 0 implies interdependence in the outcome but an i.i.d. instrument.
Following Result 1, we should still observe some bias in 2SLS in this scenario, whereas S-2SLS
should perform better. As ρz increases, the bias in 2SLS should increase, both in absolute terms
(Result 2) and relative to OLS, because the instrument becomes more similarly distributed to the
outcome relative to the predictor. Finally, varying δ, the extent of non-spatial endogeneity, allows
us to evaluate scenarios under which OLS –which produces spatial and non-spatial endogene-
ity – should perform worse than 2SLS –which produces only spatial endogeneity.

The remaining parameters {β, γ, λ1, λ2} are the coefficients of the predictors of x and y,
respectively.15 Our main focus is on the estimate of β, which we hold constant across experiments
at 2. Table 1 shows the different parameter values which we use to create simulated data sets.
There are 108 different combinations of the parameters shown in Table 1 (with the italic values
indicating those used in the subsequent figures). For each combination we generate 1000 data
sets, which results in a total of 108,000 simulation runs. On each dataset, we estimate β using
OLS, 2SLS, and our preferred method, S-2SLS.

The results are presented in Figures 2 and 3, which report the median absolute error and
coverage probabilities for the estimators, respectively.16 The figures vary along three dimensions.

Table 1. Parameter Values for Simulations

n 50 200
ρy 0 0.3 0.6
ρz 0 0.3 0.6
γ 0.75 1.5
δ −0.5 0 0.5

Note: Values in italics used in Figures 2 and 3.
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ρz = 0.3 ρz = 0.6

Estimation Method 2sls s−2sls ols

Figure 2. Median absolute error (MAE). Rows: δ, non-spatial endogeneity. Columns: ρz, spatial interdependence in the
instrument. Horizontal axis within each plot: ρy, spatial interdependence in the outcome. Vertical axis within each plot: MAE.

15In the first stage, we specify the intercept as 2. The two exogenous predictors have coefficients 3 and −2.5. For the second
stage, the intercept is −2 and the exogenous predictors are −3 and 2.5. For the plots presented in the manuscript, we set the
coefficient on the instrument to γ = 1.5 and the number of observations to n = 200. Observations for the predictors are
drawn from standard normal distributions.

16We prefer MAE as it limits the influence of potential outliers. In the Online Appendix, we also present model
performance in RMSE terms.
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First, δ – the non-spatial endogeneity – increases across the three rows from −0.5 in the top row,
to 0 in the middle row, to 0.5 in the bottom row. Second, each column shows results for a
different value of ρz – the spatial pattern of the instrument – ranging from 0 in the column on the
left over 0.3 in the middle to 0.6 on the right. Finally, within each individual plot, ρy – the spatial
interdependence in the outcome – increases from left to right across the x-axis.

Several observations stand out from the plots. Turning to the median absolute error (MAE) in
Figure 2 first, across all levels of non-spatial endogeneity (δ), the error of 2SLS grows as ρy
increases, dramatically so as ρy and ρz increase together. This is consistent with our theoretical
results: under interdependence in the outcome, the 2SLS model always returns biased estimates
(Result 1), with the severity of these biases increasing in the similarity of the spatial pattern in the
instrument and the outcome (Result 2). Importantly, when both the instrument and outcome are
characterized by spatial dependence, a situation that in our view is not uncommon in the
literature, the bias in 2SLS increases quickly. Conversely, the MAE of S-2SLS is stable, as its
performance does not suffer under high interdependence in y, z, or both. In fact, S-2SLS weakly
dominates 2SLS, besting it when spatial interdependence is present and matching it otherwise.
Thus, when non-spatial endogeneity is present and IV models may be warranted, S-2SLS per-
forms better than or as good as 2SLS. Across all scenarios considered in the simulations, 2SLS
performs better in terms of MAE only when ρy= 0, and even then the maximum difference in
median absolute error between 2SLS and S-2SLS is 0.03. While not surprising, this bolsters our
claim that S-2SLS is a useful conservative specification, robust under non-spatial and spatial
endogeneity, because it nests both cases.

The OLS estimator performs poorly when either non-spatial or spatial endogeneity is present.
However, and as discussed above, the bias can be larger for 2SLS than for OLS, even in the case of
strong non-spatial endogeneity where OLS should perform poorly. This occurs under higher
levels of ρz and ρy – as we move from the left to the right in each box, and as we move from the
left column to the right column –where the spatial and, in turn, total bias of 2SLS is greater due
to the spatial interdependence of the instrument.

The top and middle rows of Figure 2 present two particularly interesting scenarios. In the top
row, with negative non-spatial endogeneity and positive spatial interdependence, the relative
performance of OLS improves, both in absolute terms and relative to 2SLS, as the spatial
interdependence increases. The two biases are countervailing, combining to produce a result
closer to the truth. Under these conditions, 2SLS produces relatively worse results, as it addresses
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Figure 3. Coverage probabilities. Rows: δ, non-spatial endogeneity. Columns: ρz, spatial interdependence in the instrument.
Horizontal axis within each plot: ρy, spatial interdependence in the outcome. Vertical axis within each plot: Coverage rate.
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one type (and therefore direction) of bias, while neglecting the other. As a result, 2SLS produces
more biased estimates even while – in fact, due to – addressing one of the sources of that bias.

In the middle row, we have no non-spatial endogeneity bias, and relying on 2SLS is unne-
cessary. Usually, using 2SLS instead of OLS is not much of a concern, aside from a slight
efficiency loss. This changes with interdependence. If the instrument is spatially more similar to
the outcome than the predictor (as in the second and third column), 2SLS produces more total
bias than OLS. In this case, 2SLS not only was unnecessary, but results in worse estimates than
OLS. (Of course, this result hinges on the simulation setup, which consistent with our discussion
allowed for a spatial pattern in z but not in x – if the reverse was the case, 2SLS would perform
relatively better.)

These results are particularly problematic, as researchers relying on 2SLS over OLS estimates
will be more confident about results that are further from the truth and dismissive of results that
were closer to it. Frequently, a difference between 2SLS and OLS estimates is accepted as evidence
of suspected non-spatial endogeneity (such as measurement error or reverse causality) that was
successfully removed by 2SLS. While 2SLS removes non-spatial endogeneity, such arguments
ignore that 2SLS may come with biases of its own, and that these biases need not be less
pronounced than the biases in OLS. Where outcomes are interdependent, there is no guarantee
that 2SLS produces better estimates than OLS. S-2SLS, by contrast, does not suffer from this issue
and consistently outperforms both OLS and 2SLS.

Figure 3 shows the coverage probabilities for each estimator. The coverage statistic measures
the share of estimates for which the true parameter falls within the 95% confidence interval of the
estimate. If perfectly calibrated, we would expect this to be true for 95% of cases. The results are
generally consistent with our expectations. First, the coverage of OLS is generally poor under
either spatial or non-spatial endogeneity. However, for the reason just discussed, when the spatial
and non-spatial bias are oppositely signed (top row), the coverage of OLS improves with higher
spatial interdependence. Second, with interdependence in the outcome, the 2SLS estimator
undercovers, with the severity of this increasing ρz. Finally, S-2SLS has very good coverage
throughout and is not affected by interdependence in z or y. In fact, the coverage of S-2SLS is
consistently around 95%, ranging between 92% and 96%.

Robustness checks

In the Online Appendix, we discuss a series of additional experimental conditions. First, what if
the researcher has incomplete information on the spatial network (i.e., the W matrix)? To
evaluate this, we undertake additional experiments where we vary the level of misspecifica-
tion – from no error to total error – of the spatial network used in estimation. As Figure A.1 and
Figure A.2 in the Online Appendix show, S-2SLS weakly dominates 2SLS. This demonstrates
what we articulated earlier: because S-2SLS nests 2SLS, it only suffers minor efficiency losses
when it is the incorrect model. Next, we explore the consequences of a weak instrument (i.e.,
γ= 0.75). As expected, IV methods perform worse, yet the overall order in performance between
the different methods does not change. Finally, we evaluate how the performance of the esti-
mators varies with changes to sample size. All the results presented above hold.

Application
To illustrate how failing to account for spatial interdependence when using IV models can induce
bias in published research, we replicate Ramsay’s (2011) “Revisiting the Resource Curse: Natural
Disasters, the Price of Oil, and Democracy.”17 A long-standing literature in political science has
considered the effects of natural resource revenues on political order. Ramsay (2011) identifies

17In the online Appendix, we provide an additional replication of Ashraf and Galor’s article “Dynamics and Stagnation in
the Malthusian Epoch” (2011).
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reverse causality as one of the main threats to inference: changes in resource revenues may cause
political change, but politics may also affect resource revenues.

The main independent variable of interest is a country’s annual oil income per capita (spe-
cifically the price of crude oil times annual production divided by the population). The
dependent variable is a country’s level of democracy, measured as a normalized score of Polity
IV. A valid instrument would have sufficient power to explain oil revenues; and fulfill the
exclusion restriction such that it only affects changes in democracy via the path through oil
revenues. In light of these requirements, Ramsay (2011) introduces out-of-region natural dis-
asters as the IV (where regions are defined as Europe, Middle East, North Africa, sub-Saharan
Africa, Asia, or the Americas). The rationale is that natural disasters, by reducing oil production
in the affected countries, change world oil prices, and therefore oil revenues of individual
countries; at the same time, natural disasters should have no direct effect on oil production in
remote countries.

We highlight three concerns with these IV models. First, levels and changes of democracy
cluster in space (Gleditsch and Ward 2006). Second, natural disasters, the instrument of choice,
likely correlate in space. As Ramsay (2011) notes, the effects of disasters are likely to spill over,
affecting neighboring states. Finally, Ramsay (2011) aggregates the variable to the regional level,
inducing a spatial pattern by construction. By designing the instrument as “out of region disaster
damage estimates” (Ramsay 2011, 514), all countries within each of the five regions have the
same value on the instrument, thus inducing spatial correlation in the instrument by design. As
we discussed above, with a spatially interdependent outcome and instrument, we generally expect
inflationary bias in the non-spatial IV estimator.

The results from our analysis are presented in Table 2.18 First, we estimate a linear model (via
OLS), with our results (see Model 1) reproducing those found in Ramsay (2011).19 Next, we
determine whether these findings hold once we account for spatial interdependence. Before
undertaking spatial analysis, we need to select the connectivity matrix, W.20 Here, we use a row-
standardized geographic binary contiguity matrix, as these are widely used in the literature.21

Given W, we estimate a SAR model (Model 2), which returns a significant value for the spatial
effect parameter (ρ= 0.173; p-value <0.05). The coefficient for oil income per capita is still
negative and statistically significant.22

This indicates that there does appear to be spatial interdependence in the model, so now we
consider the consequence for the IV estimator. In Model 3 of Table 2, we replicate the 2SLS
model in Ramsay (2011).23 Here the estimated coefficient of log oil income is −0.36 and sta-
tistically significant. That is, the 2SLS model presents an effect estimate that is almost eight times
larger than the original OLS estimate. Finally, we estimate our preferred S-2SLS model, with the
results given in Model 4 of Table 2.24 The instrumented coefficient of logged oil income is now
estimated to be −0.088. That is, while the effect is still significant and in the expected direction, its
magnitude is much smaller than in the 2SLS model that ignores spatial interdependence.25

18As in Ramsay (2011), the predictors include log oil income per capita, GDP per capita, GDP growth, a lagged polity
variable, and year fixed effects

19This is Model 4 in Ramsay (2011).
20A detailed discussion on W selection is beyond the scope of this paper, interested readers should consult Neumayer and

Plümper (2016).
21We are unable to merge 4 observation to the shapefiles and therefore drop these from all models.
22Due to the non-linear nature of the SAR model, the average direct effect – that is, the average effect of a one-unit change

in xi on yi – is not the coefficient estimate, but instead: Tr{(I− ρW)− 1βx}/n. For the variable of logged oil income per capita,
this results in a value of −0.042, slightly smaller than the OLS effect estimate of −0.046.

23In Ramsay (2011), this is presented in column 4 of Table 3.
24W is the same as in Model 2.
25Table D.1 in the Appendix displays the results comparing the 2SLS model and the S-2SLS model for the robustness

checks presented in Table 5 in Ramsay (2011). Again, the differences between 2SLS and S-2SLS are stark and reflect the same
pattern as shown in Table 2.
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Furthermore, we see substantial efficiency gains in the estimate – as indicated by the standard
errors – once we account for spatial interdependence.

In sum, failing to account for spatial interdependence resulted in substantial inflationary bias
in the estimates of interest. We do not overturn the central finding presented in Ramsay (2011)
that oil revenue is negatively associated with the polity score, but the magnitude of the effect is
reduced considerably and the purported gains from IV estimation are significantly reduced.

Conclusion
IV models are now a frequently used tool in political science research. IV methods are especially
common in observational research, where endogeneity often threatens causal inference. How-
ever, observational data are also where concerns of spatial interdependence are the most salient
and where instruments are unlikely to be randomly assigned. Consequently, IV methods are
most widely used where the biases due to unmodelled outcome interdependence discussed above
are the most likely to occur. This problem may be especially pronounced in published research as
researchers are disproportionately likely to publish IV results where gains over OLS are the most
pronounced – as can and will occur if outcome interdependence is present and unaddressed.26

We discuss a simple strategy researchers should employ to avoid these biases: S-2SLS. This
estimation strategy offers few complications for researchers already pursuing IV methods,
inherits the properties of 2SLS familiar to those using IV models, and ensures results are robust
to spatial interdependence. Our simulations evidence that S-2SLS performs well across a variety
of situations and presents a conservative and robust alternative.

Our discussion adds to growing concerns over spatially dependent instruments (Cooperman
2017; Betz, Cook and Hollenbach 2018). While we have identified challenges to credible infer-
ence using observational data, we emphasize that we do not discourage analyses using these data.
Instead, our purposes in this paper are twofold. First, we highlighted the unique problems posed
by spatial interdependence for IV models. In our reading of the literature, these problems have
largely been ignored by applied researchers. Second, we want to encourage researchers to

Table 2. Replication of OLS and IV Results Table 1 and 3 in Ramsay (2011)

(1) (2) (3) (4)
OLS SAR 2SLS S-2SLS

Replication Spatial Replication Spatial

Log oil income per capita −0.0457*** −0.0420*** −0.358** −0.0878***
(0.00575) (0.00354) (0.167) (0.0114)

Log GDP per capita 0.0653*** 0.0662*** 0.356** 0.108***
(0.00877) (0.00533) (0.155) (0.0115)

GDP growth −0.00363*** −0.00391*** −0.0118** −0.00499***
(0.00106) (0.000921) (0.00518) (0.00102)

Polity at entry 0.666*** 0.658*** −0.00517 0.564***
(0.0280) (0.0165) (0.373) (0.0288)

Constant −0.171*** −0.237*** −0.962** −0.330***
(0.0518) (0.0499) (0.439) (0.0591)

Spatial ρy 0.173*** 0.119***
(0.015) (0.020)

Observations 1263 1263 1263 1263
Year dummies Yes Yes Yes Yes

Note: W matrix for spatial models based on contiguous neighbors. Instrumental variable: out-of-region natural disasters. Table shows
coefficient estimates, standard errors in parentheses. *p< 0.1, **p< 0.05, ***p< 0.01.

26This is a variant of the file drawer problem, with published findings suffering from substantial selection effects: biased IV
estimates, driven by unmodeled spatial interdependence, are those which are most likely to be reported.
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consider more carefully the potential drawbacks of IVs. Frequently, IV estimates are conjectured
to be superior to results from ordinary least squares. This assumption is often wrong. The
estimates obtained from IV models can quickly, and under fairly general circumstances, be worse
than ordinary least squares, even with instruments that are plausibly exogenous. IVs can, under
specific circumstances, identify causal effects. But these circumstances are more limited than is
often realized, which should give researchers some pause in advocating the use of IV models. IVs
may cause more problems than they solve.

Supplementary materials. To view supplementary material for this article, please visit https://doi.org/10.1017/
psrm.2018.61
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